Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Fang Li,* Ya-Qing Feng, Da-Xin Shi and Gang Li

School of Chemical Engineering and Technology, Tianjin University, The State Key Laboratory of C1 Chemical Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.101$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1'-Methyl-5'-phenyl-2" $, 3^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}$-tetra-hydroindoline-3-spiro-3'-pyrrolidine-4^{\prime}-spiro-2"-imidazo[2,1-b]thiazole-2,3"-dione

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, was synthesized by the intermolecular $[3+2]$-cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 2-benzylidene-5,6-dihydro-imidazo[2,1-b]thiazol-3-one. In the molecule, the two spiro junctions link a planar 2-oxoindoline ring, a pyrrolidine ring in an envelope conformation, and a 5,6-dihydroimidazo[2,1-b]thiazol-3(2H)one ring. Two molecules are connected into a dimer by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Spiro compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, (I) (Fig. 1), is reported.

(I)

Two spiro junctions exist in the molecule, which consists of a 2-oxoindoline ring, a pyrrolidine ring and a 5,6-dihydro-imidazo[2,1-b]thiazol-3(2H)-one ring. The pyrrolidine ring ($\mathrm{N} 3 / \mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 15 / \mathrm{C} 14$) is not planar, with an envelope conformation. Atoms C6/C5/C15/C14 are almost coplanar, the mean deviation from this plane being 0.038 (3) A. Atom N3 lies $0.609(3) \AA$ above the $\mathrm{C} 6 / \mathrm{C} / \mathrm{C} 15 / \mathrm{C} 14$ plane in the pyrrolidine ring, forming the flap of the envelope. The dihedral angle between the $\mathrm{C} 6 / \mathrm{N} 3 / \mathrm{C} 14$ plane and the $\mathrm{C} 6 / \mathrm{C} 5 /$ $\mathrm{C} 15 / \mathrm{C} 14$ mean plane is $44.4(2)^{\circ}$. The dihedral angle between the phenyl plane ($\mathrm{C} 16-\mathrm{C} 21$) and the $\mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 15 / \mathrm{C} 14$ plane is $97.8(2)^{\circ}$. The 2 -oxoindoline ring ($\mathrm{C} 6-\mathrm{C} 13 / \mathrm{N} 4$) is nearly planar, the mean deviation from this plane being 0.032 (3) \AA. The dihedral angle between the 2 -oxoindoline ring mean plane and the C6/C5/C15/C14 plane is 101.0 (2) ${ }^{\circ}$. The dihedral angle between the 5,6-dihydro-imidazo[2,1-b]thiazol-3(2H)one plane and the $\mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 15 / \mathrm{C} 14$ plane is 91.7 (3) ${ }^{\circ}$.

Two molecules are connected into a dimer by two N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, with an $\mathrm{N} \cdots \mathrm{N}$ distance of 2.904 (2) \AA and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle of 169°.

Received 25 July 2003
Accepted 6 August 2003
Online 8 August 2003

Figure 1
The molecular structure of (I), showing the atom-numbering scheme, drawn with 30% probability ellipsoids.

Figure 2
The crystal packing diagram of (I), viewed along the a axis

Experimental

A mixture of 2-benzylidene-5,6-dihydroimidazo[2,1-b]thiazol-3-one (1 mmol), isatin (1 mmol) and sarcosine $(1 \mathrm{~m} \mathrm{~mol})$ was refluxed in methanol (60 ml) until the starting material had disappeared, as evidenced by thin-layer chromatography. After the reaction was over the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethylacetate $=$ 2:1) to give the title compound, (I). M.p.519-521 K; IR (KBr): 3352.3
(-NH), 1721.3, $1686.1(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, p.p.m. $): 1.67(s, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.27\left(s, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.29\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 3.92\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right)$, 4.61 ($\mathrm{m}, 1 \mathrm{H},-\mathrm{CH}$), 6.81-7.52 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{ArH}$), 7.85 (bs $, 1 \mathrm{H},-\mathrm{NH})$; 20 mg of (I) was dissolved in 15 ml dioxane; the solution was kept at room temperature for 15 d and natural evaporation afforded colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	$Z=2$
$M_{r}=404.48$	$D_{x}=1.356 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.538(3) \AA$	Cell parameters from 875
$b=9.488(3) \AA$	reflections
$c=14.227(5) \AA$	$\theta=2.4-26.3^{\circ}$
$\alpha=86.206(6)^{\circ}$	$\mu=0.19 \mathrm{~mm}^{-1}$
$\beta=73.315(6)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=64.091(5)^{\circ}$	Block, colorless
$V=990.7(6) \AA^{\circ}$	$0.26 \times 0.24 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.938, T_{\text {max }}=0.960$
5754 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.101$
$S=1.03$
4015 reflections
263 parameters
$Z=2$
$D_{x}=1.356 \mathrm{Mg} \mathrm{m}$
Mo $K \alpha$ radiation
Cell parameters from 875
reflections
$\theta=2.4-26.3^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.26 \times 0.24 \times 0.20 \mathrm{~mm}$

4015 independent reflections
3129 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-9 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-17 \rightarrow 16$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\circ} \mathrm{\circ}^{-3}$
$\Delta \rho_{\max }=-0.27 \mathrm{e}^{\AA^{-3}}$

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.93 to $0.98 \AA$ and and an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$. These atoms were included in the refinement in riding-motion approximation, with $U_{\text {iso }}=1.2$ (1.5 for methyl) times $U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D. M., Kunze, H. B. \& Faulkner, D. J. (1991). J. Nat. Prod. 54, 11371140.

Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikami Y. (1991). Tetrahedron, 47, 6617-6622.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

